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ABSTRACT

In previous works, in order to develop a robust man-machine in-
terface based on speech for cars, Multi-Environment Model based
LInear Normalization, MEMLIN, was presented and it was proved
to be effective to compensate environment mismatch. MEMLIN is
an empirical feature vector normalization technique which models
clean and noisy spaces with Gaussian Mixture Models, GMMs; and
the probability of the clean model Gaussian, given the noisy model
one and the noisy feature vector (cross-probability model) is a crit-
ical point. In previous works the cross-probability model was ap-
proximated as time-independent in a training process. However, in
this paper, an estimation based on GMM is considered for MEM-
LIN. Some experiments with SpeechDat Car and Aurora 2 databases
were carried out in order to study the performance of the proposed
estimation of the cross-probability model, obtaining important im-
provements: 75.53% and 62.49% of mean improvement in Word
Error Rate, WER, for MEMLIN with SpeechDat Car and a reduced
set of Aurora2 database, respectively (82.86% and 67.52% if time-
independent cross-probability model is applied). Although the be-
haviour of the technique is satisfactory, using clean acoustic models
in decoding produces a mismatch because the normalization is not
perfect. So, retraining acoustic models in the normalized space is
proposed, reaching 97.27% of mean improvement with SpeechDat
Car database.

Index Terms— Feature vector normalization, MEMLIN,
GMM, retraining.

1. INTRODUCTION

Since cars are more and more considered as business offices, drivers
need a safe way to communicate and interact with either other hu-
mans or machines. For safety reason, traditional visual and tactile
man-machine interfaces, such as displays, buttons and knobs are
not satisfactory but speech, as the most convenient and natural way
of communication, is an appropriate and complementary solution
which can reduce distractions. Hence, Automatic Speech Recogni-
tion (ASR) provides safety and comfort, and it is possible to follow
the philosophy “Eyes on the road and hands on the steering wheel”,
which should drive every in-vehicle system design. The problem of
robust ASR in car environments has attracted much attention in the
recent years and a new market demands for systems which allow
the driver to control non critical devices or tasks like phone dial-
ing, RDs-tuner, air conditioner, satellite navigation systems,remote
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information services access, Web browsing... For this purpose, ro-
bustness in challenging car environment still needs to be improved.

When training and testing acoustic conditions differ, the accu-
racy of ASR systems rapidly degrades. To compensate for this mis-
match, robustness techniques have been developed along the follow-
ing two main lines of research: acoustic model adaptation methods,
and feature vector adaptation/normalization methods. Also, hybrid
solutions, which are effective under certain conditions, can be gener-
ated by combining both kind of techniques, [1]. In general, acoustic
model adaptation methods produce the best results [2] because they
can model the uncertainty caused by the noise statistics. However,
these methods require more data and computing time than do fea-
ture vector adaptation/normalization methods, which do not produce
as good results but provide more on line solutions. So, finally, the
choice of a robustness technique depends on the characteristics of
the application in each situation.

Feature vector adaptation/normalization methods fall into one
of three main classes [3]: high-pass filtering, which contains very
simple methods such Cepstral Mean Normalization, CMN, model-
based techniques, which assumes a structural model of environmen-
tal degradation, and empirical compensation, which uses direct cep-
stral comparisons. In any case, and independently of the class, some
algorithms assume a prior probability density function (pdf) for the
estimation variable. In those cases, a Bayesian estimator can be used
to estimate the clean feature vector. The most commonly used crite-
rion is to minimize the Mean Square Error (MSE), and the optimal
estimator for this criterion, Minimum Mean Square Error (MMSE),
is the mean of the posterior pdf. Methods, such as Stereo-based
Piecewise Linear Compensation for Environments (SPLICE) [4], or
Multi-Environment Model-based LInear Normalization (MEMLIN)
[5] use the MMSE estimator to compute the estimated clean feature
vector.

Previous works [5] show that MEMLIN is effective to compen-
sate the effects of dynamic and adverse car conditions. MEMLIN is
an empirical feature vector normalization technique based on stereo
data and the MMSE estimator. MEMLIN splits the noisy space into
several basic environments and each of them and clean feature space
are modelled using GMMs. Therefore, a bias vector transforma-
tion is associated with each pair of Gaussians from the clean and
the noisy basic environment spaces. A critical point in MEMLIN
is the estimation of the cross-probability model (the probability of
the clean model Gaussian, given the noisy model one, and the noisy
feature vector). In [5], a time-independent solution is considered to
compute this probability, but this work focuses on a different solu-
tion [6], which consists on modelling the noisy feature vectors asso-
ciated to each pair of Gaussians from the clean and the noisy basic
environment spaces with a GMM. Furthermore, adapting acoustic



models to the normalized space is proposed to reduce the mismatch
between compensated feature vectors and clean acoustic models.

This paper is organized as follows: In Section 2, an overview
of MEMLIN is detailed. In Section 3, some experiments are pre-
sented to show the importance of the cross-probability model esti-
mation. The GMM based solution considered to compute the cross-
probability model is explained in Section 4. The acoustic model re-
trained is explained in Section 5. The results with Spanish Speech-
Dat Car [7] and Aurora2 [8] databases are included in Section 6.
Finally, the conclusions are presented in Section 7.

2. MEMLIN OVERVIEW

MEMLIN is an empirical feature vector normalization technique
which uses stereo data in order to estimate the different compensa-
tion linear transformations in a previous training process. The clean
feature space is modelled as a mixture of Gaussians. The noisy space
is split into several basic acoustic environments and each one is mod-
elled as a mixture of Gaussians. The linear transformations are es-
timated for all basic environments between a clean Gaussian and a
noisy Gaussian. A scheme of MEMLIN can be shown in Fig. 1.

Fig. 1. Scheme of MEMLIN.

2.1. MEMLIN approximations

• Clean feature vectors,xt, are modelled using a GMM ofC com-
ponents

p(xt) =
C∑

sx=1

p(xt|sx)p(sx), (1)

p(xt|sx) = N (xt;μsx ,Σsx), (2)

wheret is the time index andμsx , Σsx , andp(sx) are the mean
vector, the diagonal covariance matrix, and the a priori probability
associated with the clean model Gaussiansx.
• Noisy space is split into several basic environments,e, and the

noisy feature vectors,yt, are modeled as a GMM ofC′ components

for each basic environment (assuming that all the the basic environ-
ments are modelled with the same number of components)

pe(yt) =

C′∑

sey=1

p(yt|s
e
y)p(s

e
y), (3)

p(yt|s
e
y) = N (yt;μsey ,Σsey ), (4)

wheresey denotes the corresponding Gaussian of the noisy model for
thee basic environment;μsey , Σsey , andp(sey) are the mean vector,
the diagonal covariance matrix, and the a priori probability associ-
ated withsey.
• Clean feature vectors can be approximated as a linear func-

tion, Ψ, of the noisy feature vector which depends on the basic
environments, and the clean and noisy model Gaussians:x ≈
Ψ(yt, sx, s

e
y) = yt − rsx,sey , wherersx,sey is the bias vector trans-

formation between noisy and clean feature vectors for each pair of
Gaussians,sx andsey.

2.2. MEMLIN enhancement

With those approximations, MEMLIN transforms the MMSE esti-
mation expression,̂xt = E[x|yt], into

x̂t = yt −
∑

e

∑

sey

∑

sx

rsx,seyp(e|yt)p(sx|yt, e, s
e
y), (5)

where p(e|yt) is the a posteriori probability of the basic envi-
ronment; p(sey|yt, e) is the a posteriori probability of the noisy
model Gaussian,sey, given the feature vector and the basic en-
vironment. To estimate those terms (p(e|yt) and p(sey|yt, e)),
expressions (3) and (4) are applied as described in [5]. Fi-
nally, the cross-probability model,p(sx|yt, e, sey), is the probabil-
ity of the clean model Gaussian,sx, given the noisy feature vec-
tor, the basic environment and the noisy model Gaussian. The
cross-probability model can be estimated avoiding the time de-
pendence given by the noisy feature vector in a training phase
using stereo data for each basic environment(XTre ,Y

Tr
e ) =

(xTr,e1 ,yTr,e1 ); ...; (xTr,ete
,yTr,ete

); ...; (xTr,eTe
,yTr,eTe

), with te ∈
[1, Te] [5] as

p(sx|yt, e, s
e
y) ' p(sx|s

e
y) =

∑
te
p(xTr,ete

|sx)p(y
Tr,e
te
|sey)p(sx)p(s

e
y)

∑
te

∑
sx
p(xTr,ete

|sx)p(y
Tr,e
te
|sey)p(sx)p(sey)

. (6)

On the other hand, the bias vector transformation,rsx,sey , is also
computed using the stereo data in the previous training phase [5].

3. CROSS-PROBABILITY MODEL PERFORMANCE

To study the performance of the cross-probability model in a quali-
tative way, the histograms and log-scattegrams between the first Mel
Frequency Cepstral Coefficients (MFCCs) in non-silence frames for
different signals are depicted in Fig. 2.

Figure 2.a, which represents the clean and noisy feature coeffi-
cients in real car conditions, shows the effects of car noise. The pdf
of clean first MFCCs is clearly affected (Fig.2.a.1), and the uncer-
tainty is increased (Fig.2.a.2).
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Fig. 2. Log-scattegrams and histograms between the first MFCC in non-
silence frames for different signals. The line in the log-scattergrams repre-
sents the functionx = y.

In Fig. 2.b and 2.c, clean and normalized coefficients with
MEMLIN (128 Gaussians are considered to model the clean and ba-
sic environment spaces) are represented. The pdf of normalized first
MFCCs has been approximated to the clean signal one (Fig. 2.b.1),
and the uncertainty has been reduced (Fig. 2.b.2). The peak that
appears in Fig. 2.b.1 is due to the transformation of noisy feature
vectors towards the clean silence.

Finally, Fig. 2.c represents clean and normalized coefficients
with MEMLIN when the cross-probability model is computed with
the corresponding clean feature vector as (7). 128 Gaussians are
used to model the different spaces. In this case the pdf of the nor-
malized signal is almost the same that the clean one (Fig. 2.c.1) and
the uncertainty is drastically reduced (Fig. 2.c.2). Furthermore, the
WER results in this case are almost the same that we would obtain
with clean signal. These results verify the importance of a good es-
timation of the cross-probability model in MEMLIN algorithm.

p(sx|yt, e, s
e
y) '

p(sx)p(xt|sx)∑
sx
p(sx)p(xt|sx)

. (7)

4. CROSS-PROBABILITY MODEL BASED ON GMM

To improve the time-independent cross-probability model (6), we
propose to model the noisy feature vectors associated to a pair of
Gaussians (sx andsey) with a GMM of C′′ components (assuming

that the noisy feature vectors are modelled with the same number
of Gaussianas for all pairssx andsey). Since the estimation of the
corresponding GMMs for each basic environment can be considered
independent, they are not indexed to simplify the notation. Hence
we present a model of the noisy feature vectors associated to the pair
of Gaussianssx andsy

p(yt|sx, sy) =
C′′∑

s′y=1

p(yt|sx, sy, s
′
y)p(s

′
y|sx, sy), (8)

p(yt|sx, sy, s
′
y) = N (yt;μsx,sy,s′y ,Σsx,sy,s′y ), (9)

whereμsx,sy ,s′y , Σsx,sy ,s′y , andp(s′y|sx, sy) are the mean vector,
the diagonal covariance matrix, and the a priori probability associ-
ated withs′y Gaussian of the cross-probability GMM associated with
sx andsy. To train these three parameters, the EM algorithm [9] is
applied.

Let a set of clean and noisy stereo data available to learn
the corresponding cross-probability GMM parameters(X,Y) =
{(x1,y1), ...(xn,yn)..., (xN ,yN )}. Eachyn can be seen as an
incomplete component-labelled frame, which is completed by two
indicator vectors. The first one iswn ∈ {0, 1}C

′
, with 1 in the

position corresponding to thesy Gaussian which generatesyn and
zeros elsewhere (W = {w1, ...,wN}). The second indicator vec-
tor is zn ∈ {0, 1}C

′′
, with 1 in the position corresponding to the

s′y Gaussian of the cross-probability GMM which generatesyn and
zeros elsewhere (Z = {z1, ..., zN}). Eachxn can be seen also
as an incomplete component-labelled frame, which is completed by
one indicator vector:vn ∈ {0, 1}C , with 1 in the position corre-
sponding to thesx Gaussian which generatesxn and zeros elsewhere
(V = {v1, ...,vN}). The indicator vectors are called missing data,
too. So, the complete data pdf is

p(x,y,v,w, z) ' p(v,w)p(x|v,w)×

p(v,w, z)p(y|v,w, z), (10)

where it is assumed thatx is independent ofy andz. Since the miss-
ing data are Multinomial, the complete data pdf can be expressed as
(11), wherevsx , wsy and zs′y are the components ofv, x andz
associated to the Gaussianssx, sy ands′y, respectively.

Once the complete data pdf is obtained, the EM algorithm is
applied iteratively in two steps: the Expectation (E) step, which es-
timates the expected values of the missing data, and the Maximiza-
tion (M) step, which obtains the parameters of the cross-probability
GMM using the estimated missing data.

4.1. The E step

To evaluate the E step, the functionQ(Θ|Θ(k)) is defined as
Q(Θ|Θ(k)) = E[log(p(X,Y,V,W,Z|Θ))|X,Y,Θ(k)], where
the operatorE[•] is the expected value,k is the iteration index andΘ
includes all the unknown parameters of the cross-probability GMM
we pretend to estimate. So,Q(Θ|Θ(k)) is expressed as (12), where

(vsxwsy )
(k) ' E[vsx |xn]E[wsy |yn], (13)

(vsxwsyzs′y )
(k) ' (vsxwsy )

(k)E[zs′y |yn, vsx , wsy ,Θ
(k)], (14)



p(x,y,v,w, z) '
∏
sx

∏
sy
[p(vsx = 1, wsy = 1)p(x|vsx = 1, wsy = 1)]

vsxwsy×
∏
sx

∏
sy

∏
s′y
[p(vsx = 1, wsy = 1, zs′y = 1)p(y|vsx = 1, wsy = 1, zs′y = 1)]

vsxwsy zs′y .
(11)

Q(Θ|Θ(k)) =
∑
n

∑
sx

∑
sy
(vsxwsy )

(k)[log(p(sx)p(sy)) + log(p(xn|vsx = 1, wsy = 1))]+∑
n

∑
sx

∑
sy

∑
s′y
(vsxwsyzs′y )

(k)[log(p(sx)p(sy)p(s
′
y|sx, sy)) + log(p(yn|vsx = 1, wsy = 1, zs′y = 1))].

(12)

E[zs′y |yn, vsx , wsy ,Θ
(k)] =

p(s′y|sx, sy)
(k)N(yn|μ

(k)

sx,sy,s′y
,Σ
(k)

sx,sy,s′y
)

∑
s′y
p(s′y|sx, sy)(k)N(yn|μ

(k)

sx,sy ,s′y
,Σ
(k)

sx,sy ,s′y
)
. (15)

where it is assumed thatvsx and wsy are independent,
E[vsx |xn,yn,Θ

(k)] ' E[vsx |xn] andE[wsy |xn,yn,Θ
(k)] '

E[wsy |yn]. E[zs′y |yn, vsx , wsy ,Θ
(k)] is estimated with (8) and

(9) as (15), andE[vsx |xn] andE[wsy |yn] are computed in a simi-
lar way with (1) and (2), and with (3) and (4), respectively, assuming
that there is only one basic environment. Although, in this work, to
simplify, E[vsx |xn] andE[wsy |yn] values are 1, if the correspond-
ing Gaussians are the most probable ones, and 0 in any other case
(hard Gaussian estimation approach).

4.2. The M step

To obtain the maximum likelihood estimates for the unknown pa-
rameters of the cross-probability GMM,Q(Θ|Θ(k)) is maximized
with respect to them. So, the corresponding expressions for the
(k + 1)th iteration are

p(s′y|sx, sy)
(k+1) =

∑
n(vsxwsyzs′y )

(k)

∑
n

∑
s′y
(vsxwsyzs′y )

(k)
. (16)

μ
(k+1)

sx,sy ,s′y
=

∑
n(vsxwsyzs′y )

(k)yn
∑
n(vsxwsyzs′y )

(k)
. (17)

Σ
(k+1)

sx,sy,s′y
= 1∑

n(vsxwsy zs′y
)(k)
×

∑
n(vsxwsyzs′y )

(k)(yn − μ
(k)

sx,sy,s′y
)(yn − μ

(k)

sx,sy,s′y
)t.

(18)

As it has been indicated, for MEMLIN, the cross-probability
GMM parameters have to be estimated independently for each ba-
sic environment using the labeled training corpus(XTr,e,YTr,e).
So, the expressions (8) and (9) are transformed into

p(yt|sx, s
e
y, e) =

C′′∑

s′y=1

p(yt|sx, s
e
y, s

′
y, e)p(s

′
y|sx, s

e
y, e), (19)

p(yt|sx, s
e
y, s

′
y, e) = N (yt;μsx,sey ,s′y ,Σsx,sey,s′y ), (20)

whereμsx,sey ,s′y ,Σsx,sey ,s′y , andp(s′y|sx, s
e
y, e) are the mean vector,

the diagonal covariance matrix, and the a priori probability associ-
ated withs′y Gaussian of the cross-probability GMM associated with
sx andsey. So,p(sx|yt, e, sey) can be obtained as

p(sx|yt, e, s
e,ph
y ) =

p(yt|sx, sey, e)∑
sx
p(yt|sx, sey, e)

. (21)

5. NORMALIZED SPACE ACOUSTIC MODELS

Feature vector normalization techniques try to map the noisy feature
vectors to the clean space. However this mapping is not perfect and
a new normalized space is created, which is different from the clean
one. Thus, a further improvement can be obtained adapting the clean
acoustic models towards the normalized space. For this purpose, the
noisy training data are normalized in the same way as testing data
and the original clean acoustic models are adapted with those data
towards the new normalized space. If there are enough data, Maxi-
mum Likelihood (ML) algorithm can be used, but a model adaptation
method should be applied otherwise (Maximum A Posteriori, MAP
[10], MLLR [11]...). In this work, once the MEMLIN normalized
space acoustic models are obtained, the normalized testing data can
be recognized directly with them.

6. RESULTS

6.1. Results with SpeechDat Car database

To observe the performance of the cross-probability GMM proposed
in a real, dynamic, and complex environment, a set of experiments
were carried out using the Spanish SpeechDat Car database [7].
Seven basic environments were defined: car stopped, motor running
(E1), town traffic, windows close and climatizer off (silent condi-
tions) (E2), town traffic and noisy conditions: windows open and/or
climatizer on (E3), low speed, rough road, and silent conditions (E4),
low speed, rough road, and noisy conditions (E5), high speed, good
road, and silent conditions (E6), and high speed, good road, and
noisy conditions (E7).

The clean signals are recorded with a CLose talK (CLK) mi-
crophone (Shure SM-10A), and the noisy ones are recorded by a
Hands-Free (HF) microphone placed on the ceiling in front of the
driver (Peiker ME15/V520-1). The SNR range for CLK signals goes
from 20 to 30 dB, and for HF ones goes from 5 to 20 dB.

For speech recognition, the feature vectors are composed of the
12 MFCCs, the energy, first and second derivatives, giving a final
feature vector of 39 coefficients computed every 10 ms using a 25
ms Hamming window. On the other hand, in this work, the feature
vector normalization methods are applied only to the 12 MFCCs and
energy, whereas the derivatives are computed over the normalized
static coefficients

The recognition task is isolated and continuous digits recogni-
tion. The acoustic models are composed by 16-state 3 Gaussian con-
tinuous density HMM to model the 10 Spanish digits and 2 silence
models for long (three-state 6 Gaussian continuous density HMM)
and interword (one-state 6 Gaussian continuous density HMM) si-
lences are used.



Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 0.95 2.32 0.70 0.25 0.57 0.32 0.00 0.91

CLK HF 3.05 13.29 15.52 27.32 31.36 35.5653.06 21.49

HF HF 3.81 6.86 3.50 3.76 4.96 4.44 3.06 4.63

HF† HF 1.14 4.37 1.68 2.13 2.10 2.06 23.13 3.42

Table 1. WER baseline results, in%, from the different basic environments (E1,..., E7).

The Word Error Rate (WER) baseline results for each basic envi-
ronment are presented in Table 1, where MWER is the Mean WER
computed proportionally to the number of words in each basic en-
vironment. Cepstral mean normalization is applied to testing and
training data. “Train” column refers to the signals used to obtain
the corresponding acoustic HMMs: CLK if they are trained with
all clean training utterances, and HF and if they are trained with
all noisy ones. HF† indicates that specific acoustic HMMs for each
basic environment are applied in the recognition task (environment
match condition). “Test” column indicates which signals are used
for recognition: clean, CLK, or noisy, HF.

Table 1 shows the effect of real car conditions, which increases
the WER in all of the basic environments, (“Train” CLK, “Test”
HF), concerning the rates for clean conditions, (“Train” CLK, “Test”
CLK). When acoustic models are retrained using all basic environ-
ment signals, (“Train” HF) MWER decreases. Finally, and in spite
of the high WER reached for the basic environment E7 due to the
reduced number of training utterances, 3.42% of MWER is obtained
for environment match condition.

Figure 3 shows the mean improvement in WER (MIMP) in%
for MEMLIN and MEMLIN with Cross-Probability model based
on GMM (MEMLIN CPGMM). Also the results with SPLICE with
Environmental Model Selection (SPLICE EMS) [4] are included.
MIMP is computed as

MIMP =
100(MWER−MWERCLK−HF )

MWERCLK−CLK −MWERCLK−HF
, (22)

whereMWERCLK−CLK is the mean WER obtained with clean
conditions (0.91 in this case), andMWERCLK−HF is the baseline
(21.49). So, A 100%MIMP would be achieved when MWER equals
the one obtained under clean conditions. The cross-probability
GMMs are composed by 2 Gaussians for each pair of clean and noisy
Gaussians. It can be observed the important improvement of MEM-
LIN CPGMM concerning MEMLIN: from 62.57% to 75.79% with
4 Gaussians per basic environment and from 74.08% to 82.86%with
64 Gaussians.

Although the number of Gaussians to model the basic environ-
ments could be the same for MEMLIN and MEMLIN CPGMM,
the computing time is not the same. To reduce it, only the cross-
probability GMMs of the most probable pairs of Gaussians could be
computed in normalization. Some experiments were carried out con-
sidering this alternative, showing that similar results can be obtained
computing only a reduced number of pair of Gaussians [6].

Table 2 shows the corresponing matching condition results
(MWER and MIMP) when normalized acoustic models are used
(clean and noisy condition results, Train CLK, Test CLK and Train
HF, Test HF, can be observed in Table 1 to compare). In Train HF
MEMLIN and Train HF MEMLIN CPGMM, the noisy training data
normalized with MEMLIN or MEMLIN CPGMM are used to re-
train the corresponding new acoustic models with the ML algorithm.
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Fig. 3. Mean improvement in WER, MIMP, in% for MEMLIN, MEM-
LIN with Cross-Probability model based on GMM, MEMLIN CPGMM, and
SPLICE with Environmental Model Selection, SPLICE EMS.

The number of Gaussians per basic environment is included next to
the normalization techniques and for MEMLIN CPGMM, the noisy
feature vectors for each pair of Gaussianassx andsey are modelled
with 2 components (there is not significant differences in recogni-
tion if the basic environments are modelled with different number of
Gaussians). Clearly there are significant improvements when nor-
malized space acoustic models are used. It can be observed that
the improvement with respect to using clean acoustic models is sig-
nificant (4.44% and 5.95% of MWER for MEMLIN CPGMM and
MEMLIN, respectively), and the comparison is even satisfactory
if we compare the results with the ones reached with environment
match condition (“Train” HF, “Test” HF and “Train” HF†, “Test”
HF). This is because the normalized space is not as heterogenous as
the noisy one and the training process can be more effective.

6.2. Results with Aurora2 database

Aurora2 database [8] is built from TIDigits database utterances that
have been digitally corrupted by passing them through a linear filter
and/or by adding different types of noises at SNRs ranging from
20dB to -5dB. This does not define a real environment because not
all kind of degradations are included i.e. Lombard effect [12]; but,
in spite of this weakness, Aurora2 is one of the most used database
and it is almost a standard database to compare different techniques.

In this work, the MEMLIN and MEMLIN CPGMM parame-
ters were trained using identical utterances from the clean training
set and the multi-condition training set. This tunes the normaliza-
tion parameters on the noise types from set A, keeping sets B and C
as unseen conditions. Although the results for the three sets were
obtained, in this work we only present the results with car noise
contaminated signals, which is considered as testing corpus and it



Train Test MWER (%) MIMP (%)

HF MEMLIN 64 HF MEMLIN 64 1.67 96.33

HF MEMLIN CPGMM 128 HF MEMLIN CPGMM128 1.47 97.27

Table 2. Best MWER and MIMP obtained with MEMLIN and MEMLIN CPGMM and matched acousticmodels.

Train Test -5dB 0dB 5dB 10dB 15dB 20dB clean MWER (%) MIMP (%)

CLK HF 6.83 10.71 30.75 63.53 88.55 97.0899.05 58.12 –

CLK HF MEMLIN 64 24.58 50.76 78.68 92.53 97.26 98.3399.25 83.51 62.49

CLK HF MEMLIN CPGMM 64 26.67 55.53 82.98 94.40 97.53 98.5199.25 85.79 67.52

Table 3. Best results obtained with MEMLIN and MEMLIN CPGMM with car noise contaminated signals of Aurora2 database.

is marked as HF to maintain the nomenclature. The parameters
for speech recognition (acoustic models and feature vectors) are ob-
tained as the same way as it is indicated in Subsection 6.2.

The recognition results obtained with Aurora2 database are pre-
sented in Table 3. It can be observed that MEMLIN and MEMLIN
CPGMM maintain the satisfactory performance, obtaining a mean
improvement of 62.49% and 67.52%, respectively (the improvement
is computed in this case as ETSI recommendation).

7. CONCLUSIONS

In this paper we have focussed on an approach of MEMLIN where
the cross-probability model is estimated by modelling the noisy fea-
ture vectors associated to each pair of Gaussians from the clean and
the noisy basic environment spaces with a GMM. MEMLIN obtains
an improvement in WER of 75.53%with 128 Gaussians per environ-
ment with SpeechDat Car database in Spanish, whereas MEMLIN
with cross-probability model based on GMM reaches 82.86% for 64
Gaussians to model each basic environment. If we consider Aurora2
database, and the recognition test is composed only by the car noise
corrupted signals, the improvements are, modelling each basic envi-
ronments with 64 Gaussians, 62.49% and 67.52%, respectively. On
the other hand, in order to reduce the mismatch between normal-
ized feature vectors and clean acoustic models, we propose to obtain
acoustic models which represent the normalized space. Applying
this procedure to SpeechDat Car database, important improvements
are obtained: 96.33% and 97.27% if the normalization technique is
MEMLIN or MEMLIN CPGMM with 64 and 128 Gaussianas per
basic environment, respectively.
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